organic papers

Received 9 November 2005 Accepted 17 November 2005

Online 23 November 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ding Du, Yan-Chang Lu, Hong Dai, Jian-Bing Liu and Jian-Xin Fang*

State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

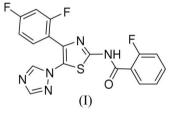
Correspondence e-mail: dd820322@mail.nankai.edu.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.006 Å Disorder in main residue R factor = 0.033 wR factor = 0.077 Data-to-parameter ratio = 8.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved


N-[4-(2,4-Difluorophenyl)-5-(1H-1,2,4triazol-1-yl)-1,3-thiazol-2-yl]-2-fluoro-

As part of a search for potent fungicidal agents, the title compound, $C_{18}H_{10}F_3N_5OS$, has been synthesized and its structure determined. In the crystal structure, the molecules are linked by intermolecular $N-H\cdots N$ hydrogen bonds. The dihedral angles between the planes of the thiazole and triazole rings, and between the thiazole and 2,4-difluorophenyl rings are 58.6 (2) and 45.3 (3)°, respectively.

Comment

benzamide

Thiazoles and their derivatives have been reported to exhibit various biological activities such as antitumor, antifungal, antibiotic and antivival activities (Hodgetts & Kershaw, 2002). Thiazolylbenzimidazole-4,7-diones, for example, possess potential antiproliferative activity (Garuti *et al.*, 2001). Triazoles appear frequently in many natural products and biologically active molecules (Robert, 1988); for instance, fluconazole is an agent for the treatment of mycoses (Sadao *et al.*, 2000).

In our previous work, we have synthesized some novel 2aminothiazole derivatives by incorporating a triazole ring into 2-aminothiazole derivatives with the aim of improving the biological activity of the parent compounds (Shao *et al.*, 2004). A series of *N*-(cycloalkylamino)acyl-2-aminothiazoles were found to exhibit antitumor activity in mice (Misra *et al.*, 2004). By incorporation of a substituted benzoyl group into 4-(2,4difluorophenyl)-5-(1*H*-1,2,4-triazol-1-yl)thiazol-2-amine, we synthesized the title compound, (I).

The dihedral angle between the planes of the thiazole and triazole rings is 58.6 (2)°, and that between the thiazole and 2,4-fluorobenzyl rings is 45.3 (3)°. The crystal structure is stabilized by intermolecular $N-H\cdots N$ hydrogen bonds (Table 2).

Experimental

To 4-(2,4-diffuorophenyl)-5-(1H-1,24-triazol-1-yl)thiazol-2-amine (0.56 g, 2 mmol) dissolved in anhydrous dichloromethane was added dropwise 2-fluorobenzoyl chloride (0.32 g, 2 mmol) with pyridine as catalyst. After refluxing for 7 h (monitored with thin-layer chromatography), the mixture was washed with water. The solution was then

organic papers

dried with anhydrous sodium sulfate and evaporated under reduced pressure and recrystallized from ethyl acetate to give colorless crystals.

 $D_x = 1.501 \text{ Mg m}^{-3}$

Cell parameters from 1764

2348 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0402P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

Absolute structure: Flack (1983),

1770 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\theta = 3.0-23.7^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$

T = 294 (2) K

Plate, colorless $0.26 \times 0.22 \times 0.16 \text{ mm}$

 $R_{\rm int} = 0.032$

 $\theta_{\rm max} = 26.3^\circ$

 $h = -8 \rightarrow 8$ $k = -30 \rightarrow 27$

 $l = -6 \rightarrow 12$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\text{max}} = 0.14 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

547 Friedel pairs Flack parameter: 0.00 (8)

Crystal data

 $C_{18}H_{10}F_{3}N_5OS$ $M_r = 401.37$ Monoclinic, Cc a = 6.986 (2) Å b = 24.629 (7) Å c = 10.333 (3) Å $\beta = 92.399$ (5)° V = 1776.3 (9) Å³ Z = 4

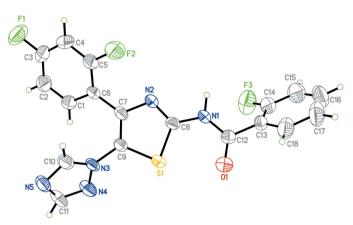
Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.942, T_{\max} = 0.964$ 4739 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.077$ S = 1.032348 reflections 267 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1


Selected geometric parameters (Å, °).

S1-C9	1.733 (3)	N1-C8	1.379 (4)
S1-C8	1.734 (3)	N3-N4	1.377 (4)
O1-C12	1.222 (4)	N3-C9	1.415 (4)
N1-C12	1.349 (4)		
C9-S1-C8	86.86 (14)		

Table 2Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{N1 \!-\! H1 \!\cdot\! \cdot\! N5^i}$	0.94 (3)	1.93 (3)	2.865 (4)	174 (3)
Symmetry code: (i)	x - 1, -y + 2, z	$+\frac{1}{2}$.		

H atoms bonded to C were were placed in calculated positions, with C-H = 0.93 Å, and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$. The H atom bonded to N was refined isotropically. The F

Figure 1

View of the title compound, with displacement ellipsoids drawn at the 50% probability level. The minor components of the disordered atoms are not shown.

atom of the fluorophenyl ring is disordered over the two *ortho* positions with site occupation factors of 0.896 (8) and 0.104 (8).

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (NNSFC) (No. 20172030) and the Key Project of the Chinese Ministry of Education (No. 105046).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Garuti, L., Roberti, M., Pession, A., Leoncini, E. & Hrelia, S. (2001). Bioorg. Med. Chem. Lett. 11, 3147–3149.
- Hodgetts, K. J. & Kershaw, M. T. (2002). Org. Lett. 4, 1363-1365.

Misra, R. N., Xiao, H. Y., Kim, K. S., Lu, S. F., Han, W. C., Barbosa, S. A., Hunt, J. T., Rawlins, D. B., Shan, W. F., Ahmed, S. Z., Qian, L. Q., Chen, B. C., Zhao, R. L., Bednarz, M. S., Kellar, K. A. *et al.* (2004). *J. Med. Chem.* 47, 1719–1728.

Robert, A. F. (1988). Clin. Microbiol. Rev. 1, 187-217.

- Sadao, O., Yawara T., Toshiyuki, k., Yoshie, N., Atsushi, S., Teruo T., Shinobu, H., Tamako, H., Yasuki, K., Takashi, F., Satoshi, O. & Hiroshi, Y. (2000). *Chem. Pharm. Bull.* 48, 694–707.
- Shao, L., Jin, Z., Liu, J. B., Zhou, X., Zhang, Q., Hu, Y. & Fang, J. X. (2004). Acta Cryst. E60, 02517–02519.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.